

Journal of Alloys and Compounds 300-301 (2000) 113-122

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Rare earth coordination compounds: from monodentate ligands via crown ether complexes to a variety of bidentate ligands

Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Abstract

With a wide range of ionic radii, the rare-earth ions, M^{3^+} , exhibit a large variety of coordination geometry. Coordination numbers vary from 6 (octahedron) to 12. Ligands may be monodentate like halide ions and water molecules, bidentate like acetate, proprionate, β -diketonates, tetra- to hexadentate as with crown ethers, hexadentate like tetraglyme. The coordination polyhedra might be monomers, di- or trimers or they may be incorporated into chains, layers, or even networks. Therefore, from a plethora of structures, complexes with special properties (optical, magnetic) might in principle be tailored. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Rare earth complexes; Ligands; Crown ethers

1. From monodentate ligands (X⁻)

The trivalent rare earths cations, M^{3+} (M=Sc, Y, La, Ce-Lu), cover a wide range of ionic radii, between 75 and 103 pm when scaled to coordination number six (CN 6) [1,2], the minimum CN for monodentate ligands such as the spherical halide anions, X^- (X=F,Cl,Br,I). With the larger rare-earth ions, especially from La³⁺ through Gd³⁺, they usually exhibit larger CN of up to CN 11.

Examples to mention are: LaF_3 with CN 11 for La^{3+} (pentacapped trigonal prism) and CN 9 in $LaCl_3$ (tricapped trigonal prism, UCl₃ type of structure), CN. 8 for Tb^{3+} in TbCl₃ (bicapped trigonal prism) and, finally, the octahedron in many binary trihalides, e.g., YCl₃. For a detailed discussion see for example [2]. CN 7 has not been seen in trihalides, MX₃.

There is, however, a fair number of ternary halides exhibiting CN 7 for M^{3+} . Ba₂ErCl₇ was the first example with an *isolated* [MCl₇] polyhedron [3–6] meaning that in accord with the formula Ba₂[EuCl₇] all seven chloride ligands are terminal. In K₂PrCl₅, Pr³⁺ also has CN 7 but the monocapped trigonal prisms are now connected via two trans edges forming a one-dimensional chain [7,8]. This is in accord with the large ionic radius of Pr³⁺ (99 pm) which could afford CN 9 as in PrCl₃ itself; however, Pr^{3+} competes with the much larger K⁺ ions for the ligands of which there are only five for three cations. The $[PrCl_7]$ polyhedra need to be connected to meet the formula's requirement of 5 Cl⁻ per Pr³⁺. Trans edge-connection according to $[PrCl_{3/1}Cl_{4/2}]$ is apparently the best choice to minimize the lattice energy of K₂PrCl₅. With the smaller Dy³⁺ we observe CN 6 and *cis*-corner connected octahedra according to $[DyCl_{4/1}Cl_{2/2}]$ in Cs₂DyCl₅ [9].

In a different formula type, however, Dy^{3^+} may also be seven-coordinate. This is the case in KDy_2Cl_7 where $[DyCl_7]$ monocapped trigonal prisms share one common face and two edges with three equivalent polyhedra thereby forming a layer [10].

On the other hand, the rare-earth cation may afford a higher coordination number (8) as Gd^{3+} in BaGdCl_5 [11] when the anion to cation ratio is higher. Square antiprisms [GdCl₈] are connected via two common edges and corners each according to [GdCl^e_{2/2}Cl^e_{4/2}Cl^t_{2/1}] (c means corner, e edge sharing and t terminal). CN 8 is also achieved in the anti-scheelite type chlorides, e.g., LiGdCl₄ [12] whereas the analogous sodium chlorides NaMCl₄ have CN 8 for M^{3+} [13–16].

The apparently lowest coordination number for a trivalent rare-earth cation in halides, CN 6, is always seen when the counter cations are large and relatively numerous and/or the ionic radius of M^{3+} is sufficiently small. Note that even when there are enough chloride ligands available,

^{*}Fax: +49-221-470-5083.

E-mail address: gerd.meyer@uni-koeln.de (G. Meyer)

Fig. 1. Some coordination features of rare-earth cations (M^{3+}) with monodentate ligands (X^{-}) : CN 11 in LaF₃ (a), CN 9 in the UCl₃ type $(LaCl_3-GdCl_3)$ (b), CN 8 in the PuBr₃ type $(TbCl_3)$ (c), CN 7 in RbDy₂Cl₇ (d) and in K₂PrCl₅ (e), and CN 6 in Cs₂DyCl₅ (f).

small Sc^{3^+} is only surrounded by six Cl^- as for example in $\text{Ba}_2\text{ScCl}_7 \equiv \text{Ba}_2\text{Cl}[\text{ScCl}_6]$ [17]. In all of the elpasolites, e.g., $\text{Cs}_2\text{AgEuCl}_6$ [18], cryolites, e.g. Na_3ErCl_6 [19], or in the stuffed derivatives of the LiSbF₆ type of structure, e.g. Na_3GdCl_6 [20], the rare-earth cation M^{3^+} is octahedrally surrounded by six halide ligands, see also [21], Fig. 1.

2. Via crown ether complexes

Hints that $Ph_4P[ScCl_4]$ may contain an isolated tetrahedron as In^{3+} in $Et_4N[InCl_4]$ [22] have not been verified. Whenever larger rare-earth cations are chosen and crystallization is carried out from solution, CN 6 is easily achieved as the edge-connected dimeric anions in, e.g., $(Ph_4P)DyCl_4(CH_3CN) \equiv (Ph_4P)_2[Dy_2(\mu_2 - Cl)_2(\mu_1 - Cl)_6 - (CH_3CN)_2]$ [23] clearly show, Fig. 2.

The same anion is also seen in $[Dy_2Cl_4(dibenzo-18-crown-6)_2][Dy_2Cl_8(CH_3CN)_2]$ [24]. In the cation, Dy^{3+} has only CN 3 against Cl⁻, two Y-shaped 'triangles' sharing a common edge. However, there is the crown ether Dibenzo-18-crown-6 that adds its six oxygen ligator atoms to the coordination sphere so that the coordination number may be given as CN=3+6.

CN 9 is not unusual in crown ether complexes as the examples of the monomeric complex [SmI₃(dibenzo-18crown-6] [25] and the dimeric complexes $[La_2I_2(OH)_2(dibenzo-18-crown-6)_2]I(I_3)$ [26] and $[Ce_{2}I_{2}(OH)_{2}(dibenzo-18-crown-6)_{2}]I_{2}(H_{2}O)_{3.3}$ [27] clearly show. The latter two contain hydroxide bridged dimeric cations. In all three complexes the M^{3+} cations reside within the plane of the six oxygen ligator atoms of the crown ether, thus they are in-cavity complexes. Out-ofcavity complexes appear when the diameter of the cavity is

Fig. 2. The anion $[Dy_2Cl_8(CH_3CN)_2]^{2-}$ as observed in $(Ph_4P)DyCl_4(CH_3CN) \equiv (Ph_4P)_2[Dy_2(\mu_2-Cl)_2(\mu_1-Cl)_6(CH_3CN)_2]$ and in $[Dy_2Cl_4(dibenzo-18-crown-6)_2][Dy_2Cl_8(CH_3CN)_2]$.

too small to accomodate the rare-earth cation. Examples are the monomeric [LaBr₃(12-crown-4)(acetone)] [28] and [29] $[NdCl_3(15-crown-5)]$ and the dimeric $[Y_2(OH)_2(benzo-15-crown-5)_2(CH_3CN)_2]I_4$ [30], again with hydroxide bridges. These three have only CN 8 which appears to be rather typical for out-of-cavity complexes. There are, however, in-cavity complexes with CN 8 as the example of the rather complicated complex with divalent (H₃O)₄Eu₂Br₄(dibenzo-18-crowneuropium shows: 6_{6} [EuBr₆](H₂O)₂ [27]. This salt contains crown ether complexes of H_3O^+ and Eu^{2+} and $[EuBr_6]^{4-}$ octahedra. The H_3O^+ cation resides about 120 pm above the oxygen hexagon of the dibenzo-18-crown-6. The Eu²⁺ cation adds two bromide ligands to its coordination sphere to achieve CN 8, Fig. 3.

An example for an even higher coordination number is found in $[NdCl(NO_3)_2(tetraglyme)]$ [31]. Here the tetraethylene glycol dimethyl ether acts as a pentadentate ligand so that with chloride monodentate and the two bidentate nitrate ligands Nd³⁺ has now CN 10 in this heteroleptic complex, Fig. 4.

3. To a variety of bidentate ligands

The highest coordination numbers, however, are found with rather old-fashioned bidentate ligands such as nitrate. Already in the salt $(NH_4)_2[M(NO_3)_5(H_2O)_2](H_2O)_2$ that *Auer von Welsbach* used to separate the didymium twins by fractional crystallization (M=Pr, Nd) [32,33] contains twelve coordinate M^{3+} [34]. Five bidentate nitrate ligands and two water molecules surround M^{3+} . Nitrate ligands alone achieve CN 12 in the ternary ammonium nitrates $(NH_4)_3M_2(NO_3)_9$ (M=La-Gd) [35]. A complicated network structure is observed with nitrate ligands acting not only bidentately but also as tridentate-bridging ligands. An isolated anionic complex with only bidentate nitrate ligands is found in $(NH_4)_6[Nd(NO_3)_6](NO_3)_3$ with three lonesome nitrate groups in a sense that they are not coordinated to Nd³⁺ [36].

With the smaller rare-earth elements M=Tb-Lu,Y the coordination number is reduced von 10 in the nitrates $(NH_4)_2[M(NO_3)_5]$ [37]. Crystals of all of these ternary ammonium nitrates are rather easily obtained from ammonium nitrate melts at about 180–190°C where NH_4NO_3 sublimes and decomposes slowly (to N_2O and H_2O) so that the melt slowly concentrates.

An example for CN 9 is found in the heteroleptic molecular complex $Yb(NO_3)_3(H_2O)_3$, the trihydrate of ytterbium(III) nitrate [38], Fig. 5.

Another example of a potentially tridentate ligand is the carbonate ion, $CO_3^{2^-}$. As for nitrate, there is no crystal structure of a binary carbonate yet available because crystal growth could not be achieved. However, ternary carbonates such as $CsPr(CO_3)_2$ [39] and a number of

Fig. 3. Crown ether complexes: Monomeric and dimeric *in-cavity*- and *out-of-cavity* complexes as observed in $[SmI_3(dibenzo-18-crown-6)]$ (a), $[LaBr_3(12-crown-4)(acetone)]$ (b), $[La_1I_2(OH)_2(dibenzo-18-crown-6)]$ (I(I₃) (c), and $[Y_2(OH)_2(benzo-15-crown-5)_2]$ (CH₃CN)₂]I₄ (d), respectively.

potassium and rubidium analogues, $KM(CO_3)_2$ (M=La-Nd) [40] and Rb(Sm(CO₃)₂ [41] are now structurally well known. Additionally, single crystals of basic carbonates such as Dy₂(CO₃)O₂ and Dy(CO₃)(OH) could be grown hydrothermally and the crystal structures were determined [42]. Coordination numbers for Dy³⁺ in these compounds are usually 8 or 7, for Pr³⁺ in CsPr(CO₃)₂ 8 and 9, respectively, Fig. 6.

Whereas single crystals of binary carbonates and nitrates have not yet been obtained, almost the complete series of anhydrous binary acetates is now known. In $Sc(CH_3COO)_3$ [43], Sc^{3+} has CN 6, three bidentatebridging acetate ligands lead to a chain. Moving on to larger M^{3+} cations like Lu^{3+} , the coordination number is enhanced to 7 and further to 8 (Ho(CH₃COO)₃) [44]. In Pr(CH₃COO)₃ we find a network-type structure with CN of 9 and 10 for Pr³⁺ [45] and, finally, with the largest rare-earth cation, La³⁺, CN 10 is achieved in La(CH₃COO)₃ [46].

Coordination numbers of 9 are also found in a number of heteroleptic complexes. In the 2:1:3 and 1:2:7 type acetate-chloride-hydrates $M(CH_3COO)_2Cl(H_2O)_3$ and $M(CH_3COO)Cl_2(H_2O)_7$, respectively, chloride is, as the weaker ligand, in the outer coordination sphere [47–51]. In

Fig. 4. Molecular structure of $[NdCl(NO_3)_2(tetraglyme)]$ and the coordination sphere around Nd^{3+} (right).

Fig. 5. Nitrates: Coordination numbers of 12 in the anions of $(NH_4)_2[M(NO_3)_5(H_2O)_2](H_2O)_2$ (a) and $(NH_4)_6[Nd(NO_3)_6](NO_3)_3$ (b), CN 10 in $(NH_4)_2[M(NO_3)_5]$ (c) and CN 9 in the molecule $Yb(NO_3)_3(H_2O)_3$ (d).

Fig. 6. Carbonates: Crystal structures of the ternary carbonates $KNd(CO_3)_2$ (a) and $KDy(CO_3)_2$ (b) and of the basic carbonates $Dy_2(CO_3)O_2$ (c) and $Dy(CO_3)(OH)$ (d).

the first one, $[M(CH_3COO)_2(H_2O)_3]Cl$ with M=Ce-Lu, Y, we observe infinite chains of nine-coordinate M^{3+} where four bidentate-bridging acetate ligands act as bidentate and monodentate ligands twice each. Three water molecules molecules fill up the coordination sphere. In the latter one, $[M(CH_3COO)(H_2O)_6]Cl_2(H_2O)$ with M=La-Sm, dimers are formed through two bidentate-bridging acetate ligands and the coordination sphere is completed by six water molecules. The only example that we could find for an inner-sphere chloride ligand is [La₂(CH₃COO)₂(H₂O)₇Cl₃]Cl [52]. Both symmetrically independent La³⁺ have CN 9, however with 2 Cl+7 O and 1 Cl+8 O ligator atoms, respectively, Fig. 7.

With regard to acetates, initial investigations have also

been carried into proprionates, of which $Pr(CH_3CH_2COO)_3(H_2O)_3$ [53] exhibits in principle the same schemes as do acetates. It has a chain structure with Pr^{3+} CN 9 and 10, respectively.

Additionally, after the above-mentioned heteroleptic chloride-acetates, we have started to look into chloro-acetates. $Pr_2(Cl_2HCCOO)_6Cl_2HCCOOH~5H_2O$ and $Sm_2(Cl_2HCCOO)_64H_2O$ are first examples [54], Fig. 8.

In pursuit of new β -diketonato complexes of the rare earths, especially europium for its optical properties, two new salts were obtained: $(CH_3NH_2)[Eu(C_6H_5COCH_2COCF_3)_4]$ and the naphthyl analogue $(CH_3NH_2)[Eu(C_{10}H_{17}COCH_2COCF_3)_4]$ [27]. In both, Eu³⁺ has CN 8 (Fig. 9).

Fig. 7. Acetates and acetate-chlorides: (a) One-dimensional chains in the anhydrous acetates $Sc(CH_3COO)_3$ (CN 6), $Lu(CH_3COO)_3$ (CN 7), and $Ho(CH_3COO)_3$ (CN 8); (b) chains and dimers in the crystal structures of $[Sm(CH_3COO)_2(H_2O)_3]Cl$ and $[Sm(CH_3COO)(H_2O)_6]Cl_2(H_2O)$, respectively.

Fig. 8. Dichloroacetates: Chain of the composition $[Pr_2(Cl_2HCCOO)_6(H_2O)_3]$ in $Pr_2(Cl_2HCCOO)_6Cl_2HCCOOH_5H_2O$ (a) and the layer built up from dimers in $Sm_2(Cl_2HCCOO)_64H_2O$ (b).

Fig. 9. β -Diketonato complexes: The anions $[Eu(C_6H_5COCF_3)_4]^-$ (a) and $[Eu(C_{10}H_{17}COCH_2COCF_3)_4]^-$ (b) in the crystal structures of $(CH_3NH_2)[Eu(C_6H_5COCH_2COCF_3)_4]$ and $(CH_3NH_2)[Eu(C_{10}H_{17}COCH_2COCF_3)_4]$, respectively.

References

- [1] R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B25 (1969) 925.
- [2] R.D. Shannon, Acta Crystallogr. A32 (1976) 751.
- [3] G. Meyer, M.S. Wickleder, in: K.A. Gschneidner, L. Eyring (Eds.), Handbook on the Physics and Chemistry of the Rare Earths.
- [4] P. Egger, P. Rogin, T. Riedener, H.U. Güdel, M.S. Wickleder, J. Hulliger, Adv. Mater. 8 (1996) 668.
- [5] M.S. Wickleder, P. Egger, T. Riedener, N. Furer, H.U. Güdel, J. Hulliger, Chem. Mater. 8 (1996) 2828.
- [6] S. Masselmann, G. Meyer, Z. Kristallogr, New Crystal Struct. 213 (1998) 690.
- [7] G. Meyer, E. Hüttl, Z. Anorg Allg. Chem. 497 (1983) 191.
- [8] G. Meyer, J. Soose, A. Moritz, V. Vitt, Th. Holljes, Z. Anorg. Allg. Chem. 521 (1985) 161.
- [9] G. Meyer, Z. Anorg. Allg. Chem. 469 (1980) 149.
- [10] G. Meyer, Z. Anorg. Allg. Chem. 491 (1982) 217.

- [11] S. Masselmann, G. Meyer, Z. Anorg. Allg. Chem. 624 (1998) 357.
- [12] G. Meyer, Z. Anorg. Allg. Chem. 517 (1984) 191.
- [13] Th. Schleid, G. Meyer, Z. Anorg. Allg. Chem. 590 (1990) 103.
- [14] M.S. Wickleder, G. Meyer, Z. Anorg. Allg. Chem. 621 (1995) 546.
- [15] M.S. Wickleder, H.-U. Güdel, T. Armbruster, G. Meyer, Z. Anorg. Allg. Chem. 622 (1996) 785.
- [16] A. Bohnsack, M.S. Wickleder, G. Meyer, Z. Kristallogr. 211 (1996) 394.
- [17] S. Masselmann, G. Meyer, Z. Anorg. Allg. Chem. 624 (1998) 551.
- [18] G. Meyer, P. Linzmeier, Rev. Chim. Miner. 14 (1977) 52.
- [19] G. Meyer, P. Ax, Th. Schleid, M. Irmler, Z. Anorg. Allg. Chem. 554 (1987) 25.
- [20] G. Meyer, Z. Anorg. Allg. Chem. 511 (1984) 193.
- [21] G. Meyer, Prog. Solid State Chem. 14 (1982) 141.
- [22] J. Trotter, F.W.B. Einstein, D.G. Tuck, Acta Crystallogr. B25 (1969) 603.
- [23] G. Crisci, G. Meyer, Z. Anorg. Allg. Chem. 624 (1998) 927.
- [24] G. Crisci, G. Meyer, Z. Anorg. Allg. Chem. 620 (1994) 1023.
- [25] C. Runschke, G. Meyer, Z. Anorg. Allg. Chem. 623 (1997) 981.
- [26] C. Runschke, G. Meyer, Z. Anorg. Allg. Chem. 623 (1997) 1493.
- [27] J.J. Aiscar, 1998. Dissertation, University of Hannover.
- [28] C. Runschke, G. Meyer, Z. Anorg. Allg. Chem. 623 (1997) 1017.
- [29] R.D. Rogers, A.N. Rollins, R.F. Henry, J.S. Murdoch, R.D. Etzenhouser, S.E. Huggins, L. Nunez, Inorg. Chem. 30 (1991) 4946.
- [30] C. Runschke, G. Meyer, Z. Anorg. Allg. Chem. 624 (1998) 1243.
- [31] A. Möller, N. Scott, G. Meyer, G.B. Deacon, Z. Anorg. Allg. Chem. 625 (1999) 181.
- [32] C. Auer von Welsbach, Monatsh. Chem. 5 (1884) 508.

- [33] C. Auer von Welsbach, Monatsh. Chem. 6 (1884) 477.
- [34] G. Meyer, E. Manek, A. Reller, Z. Anorg. Allg. Chem. 591 (1990) 77.
- [35] E. Manek, G. Meyer, Z. Anorg. Allg. Chem. 616 (1992) 141.
- [36] E. Manek, G. Meyer, Z. Anorg. Allg. Chem. 619 (1993) 761.
- [37] E. Manek, G. Meyer, Z. Anorg. Allg. Chem. 619 (1993) 1237.
- [38] H. Jacobsen, G. Meyer, Z. Anorg. Allg. Chem. 615 (1992) 16.
- [39] A. Lossin, G. Meyer, Z. Anorg. Allg. Chem. 619 (1993) 2031.
- [40] I. Kutlu, H.-J. Kalz, R. Wartchow, H. Ehrhardt, H. Seidel, G. Meyer, Z. Anorg. Allg. Chem. 623 (1997) 1753.
- [41] I. Kutlu, G. Meyer, Z. Kristallogr., New Crystal Struct. 213 (1998) 236.
- [42] I. Kutlu, G. Meyer, Z. Anorg. Allg. Chem. 625 (1999) 402.
- [43] R. Fuchs, J. Strähle, Z. Naturforsch. 39b (1984) 1662.
- [44] A. Lossin, G. Meyer, Z. Anorg. Allg. Chem. 619 (1993) 1609.
- [45] A. Lossin, G. Meyer, Z. Anorg. Allg. Chem. 620 (1994) 438.
- [46] G. Meyer, D. Gieseke-Vollmer, Z. Anorg. Allg. Chem. 619 (1993) 1603.
- [47] Th. Schleid, G. Meyer, Z. Kristallogr. 189 (1989) 258.
- [48] Th. Schleid, G. Meyer, Z. Naturforsch. 44b (1989) 1007.
- [49] Th. Schleid, G. Meyer, Z. Anorg. Allg. Chem. 583 (1990) 46.
- [50] G. Meyer, A. Lossin, Th. Schleid, Eur. J. Solid State Inorg. Chem. 28 (1991) 529.
- [51] A. Lossin, G. Meyer, J. Less-Common Met. 175 (1991) 301.
- [52] Th. Schleid, A. Lossin, G. Meyer, Z. Anorg. Allg. Chem. 598/599 (1991) 299.
- [53] D. Deiters, G. Meyer, Z. Anorg. Allg. Chem. 622 (1996) 325.
- [54] G. Meyer, C. Bromant, 1998. Unpublished research.