

Journal of Alloys and Compounds 300–301 (2000) 113–122

Several of
ALLOYS
AND COMPOUNDS
————————————————————

www.elsevier.com/locate/jallcom

Rare earth coordination compounds: from monodentate ligands via crown ether complexes to a variety of bidentate ligands

Gerd Meyer*

Institut f ur Anorganische Chemie ¨ ¨¨ ¨ , *Universitat zu Koln*, *Greinstrasse* 6, *D*-⁵⁰⁹³⁹ *Koln*, *Germany*

Abstract

With a wide range of ionic radii, the rare-earth ions, M^{3+} , exhibit a large variety of coordination geometry. Coordination numbers vary from 6 (octahedron) to 12. Ligands may be monodentate like halide ions and water molecules, bidentate like acetate, proprionate, b-diketonates, tetra- to hexadentate as with crown ethers, hexadentate like tetraglyme. The coordination polyhedra might be monomers, di- or trimers or they may be incorporated into chains, layers, or even networks. Therefore, from a plethora of structures, complexes with special properties (optical, magnetic) might in principle be tailored. \degree 2000 Elsevier Science S.A. All rights reserved.

Keywords: Rare earth complexes; Ligands; Crown ethers

103 pm when scaled to coordination number six (CN 6) connection according to $[PrCl_{3/1}Cl_{4/2}]$ is apparently the [1,2], the minimum CN for monodentate ligands such as best choice to minimize the lattice energy of $K_2 PrCl_5$ the spherical halide anions, $X^-(X=F, C I, Br, I)$. With the with the smaller Dy^{3+} we observe CN 6 and *cis*-corner larger rare-earth ions, especially from La³⁺ through Gd³⁺, connected octahedra according to $[DyCl_{4/1}Cl_{$

ron in many binary trihalides, e.g., YCl_3 . For a detailed thereby forming a layer [10].
discussion see for example [2]. CN 7 has not been seen in On the other hand, the rare-earth cation may afford a

exhibiting CN 7 for M^{3+} . Ba₂ErCl₇ was the first example [GdCl₈] are connected via two common edges and corners
with an *isolated* [MCl₇] polyhedron [3–6] meaning that in each according to [GdCl^c_{2/2}Cl^e_{4/} ligands are terminal. In K_2PrCl_5 , Pr^{3+} also has CN 7 but
the monocapped trigonal prisms are now connected via the analogous sodium chlorides NaMCl₄ have CN 8 for the monocapped trigonal prisms are now connected via the analogous sodium chlorides NaMCl₄ have CN 8 for
two trans edges forming a one-dimensional chain [7,8]. M^{3+} [13–16].
This is in accord with the large ionic rad pm) which could afford CN 9 as in PrCl₃ itself; however, valent rare-earth cation in halides, CN 6, is always seen

1. From monodentate ligands (X^-) Pr³⁺ competes with the much larger K^+ ions for the The trivalent rare earths cations, M^{3+} (M=Sc, Y, La, [PrCl₇] polyhedra need to be connected to meet the Ce-Lu), cover a wide range of ionic radii, between 75 and formula's requirement of 5 Cl⁻ per Pr³⁺. Trans ed

they usually exhibit larger CN of up to CN 11. Cs_2DyCl_5 [9].
Examples to mention are: LaF₃ with CN 11 for La³⁺ In a different formula type, however, Dy³⁺ may also be (pentacapped trigonal prism) and CN 9 in (pentacapped trigonal prism) and CN 9 in LaCl₃ (tricapped seven-coordinate. This is the case in KDy_2Cl_7 where
trigonal prism, UCl₃ type of structure), CN. 8 for Tb³⁺ in [DyCl₇] monocapped trigonal prisms share o face and two edges with three equivalent polyhedra

trihalides, MX_3 .
There is, however, a fair number of ternary halides when the anion to cation ratio is higher. Square antiprisms

when the counter cations are large and relatively numerous $*_{\text{Fax}:}$ +49-221-470-5083. and/or the ionic radius of M^{3+} is sufficiently small. Note *E*-*mail address*: gerd.meyer@uni-koeln.de (G. Meyer) that even when there are enough chloride ligands available,

Fig. 1. Some coordination features of rare-earth cations (M^{3+}) with monodentate ligands (X^-) : CN 11 in LaF₃ (a), CN 9 in the UCl₃ type (LaCl₃-GdCl₃) (b), CN 8 in the PuBr₃ type (TbCl₃) (c), CN 7 in RbDy₂Cl₇ (d) and in K₂PrCl₅ (e), and CN 6 in Cs₂DyCl₅ (f).

small Sc^{3+} is only surrounded by six Cl^{-} as for example too small to accomodate the rare-earth cation. Examples in Ba₂ScCl₇ = Ba₂Cl[ScCl₆] [17]. In all of the elpasolites, are the monomeric [LaBr₃(12-crown-4)(acetone)] [28] and e.g., Cs₂AgEuCl₆ [18], cryolites, e.g. Na₃ErCl₆ [19], or in [NdCl₃(15-crown-5)] [29] e.g., $Cs_2AgEuCl_6$ [18], cryolites, e.g. Na_3ErCl_6 [19], or in [NdCl₃(15-crown-5)] [29] and the dimeric the stuffed derivatives of the LiSbF₆ type of structure, e.g. [Y₂(OH₂(benzo-15-crown-5)₂(CH₃CN)₂]I₄ [30 $Na₃GdCl₆$ [20], the rare-earth cation $M³⁺$ is octahedrally with hydroxide bridges. These three have only CN 8 which surrounded by six halide ligands, see also [21], Fig. 1. appears to be rather typical fo

tallization is carried out from solution, CN 6 is easily CN 8, Fig. 3. achieved as the edge-connected dimeric anions in, e.g., An example for an even higher coordination number is $(Ph_4P)DyCl_4(CH_3CN) \equiv (Ph_4P)_2[Dy_2(\mu_2 - Cl)_2(\mu_1 - Cl)_6$ found in [NdCl(NO₃)₂(tetraglyme)] [31]. Here the tetra-

crown-6)₂][Dy₂Cl₈(CH₃CN)₂] [24]. In the cation, Dy³⁺ bidentate nitrate ligands Nd³⁺ has now CN 10 in this has only CN 3 against Cl⁻, two Y-shaped 'triangles' heteroleptic complex, Fig. 4. sharing a common edge. However, there is the crown ether Dibenzo-18-crown-6 that adds its six oxygen ligator atoms to the coordination sphere so that the coordination number may be given as $CN=3+6$. **3. To a variety of bidentate ligands**

CN 9 is not unusual in crown ether complexes as the examples of the monomeric complex [Sm]_3 (dibenzo-18- The highest coordination numbers, however, are found crown-6] [25] and the dimeric complexes with rather old-fashioned bidentate ligands such as nitrate. $[La_2I_2(OH)_2$ (dibenzo-18-crown-6)₂]I(I₃) [26] and Already in the salt $(NH_4)_2[M(NO_3)_5(H_2O)_2](H_2O)_2$ that $[Ce_2I_2(OH)_2$ (dibenzo-18-crown-6)₂]I₂(H₂O)₃, [27] clear- *Auer von Welsbach* used to separate the didymiu $[Ce₂I₂(OH)₂(dibenzo-18-crown-6)₂]I₂(H₂O)_{3,3} [27] clear-
ly show. The latter two contain hydroxide bridged dimeric by fractional crystallization (M=Pr, Nd) [32,33] contains$ cations. In all three complexes the M^{3+} cations reside
welve coordinate M^{3+} [34]. Five bidentate nitrate ligands
within the plane of the six oxygen ligator atoms of the and two water molecules surround M^{3+} . Ni crown ether, thus they are *in*-*cavity* complexes. *Out*-*of*- alone achieve CN 12 in the ternary ammonium nitrates

 $(Ph_4P)DyCl_4(CH_3CN) = (Ph_4P)_2[Dy_2(\mu_2\text{-}Cl)_2(\mu_1\text{-}Cl)_6(CH_3CN)_2]$ and in $[Dy_2Cl_4(\text{diberzo-18-crown-6})_2][Dy_2Cl_8(CH_3CN)_2]$.

appears to be rather typical for out-of-cavity complexes. There are, however, *in*-*cavity* complexes with CN 8 as the example of the rather complicated complex with divalent europium shows: $(H_3O)_4Eu_2Br_4$ (dibenzo-18-crown-
6)₆[EuBr₆](H₂O)₂ [27]. This salt contains crown ether 2. Via crown ether complexes $6)_6$ [EuBr₆](H₂O)₂ [27]. This salt contains crown ether

complexes of H₃O⁺ and Eu²⁺ and [EuBr₆]⁴⁻ octahedra.

Hints that Ph₄P[ScCl₄] may contain an isolated tetra-

hedron two bromide ligands to its coordination sphere to achieve

 $(CH₃CN)₂$ [23] clearly show, Fig. 2. ethylene glycol dimethyl ether acts as a pentadentate 3 2. ethylene glycol dimethyl ether acts as a pentadentate 3 2. ethylene glycol dimethyl ether acts as a pentadentate 3

cavity complexes appear when the diameter of the cavity is $(NH_4)_3M_2(NO_3)_9$ (M=La-Gd) [35]. A complicated network structure is observed with nitrate ligands acting not only bidentately but also as tridentate-bridging ligands. An isolated anionic complex with only bidentate nitrate ligands is found in $(NH_4)_{6} [Nd(NO_3)_{6}](NO_3)_{3}$ with three lonesome nitrate groups in a sense that they are not coordinated to Nd^{3+} [36].

> With the smaller rare-earth elements $M = Tb-Lu, Y$ the coordination number is reduced von 10 in the nitrates (NH_4) , $[M(NO_3)_5]$ [37]. Crystals of all of these ternary ammonium nitrates are rather easily obtained from ammonium nitrate melts at about 180–190°C where $NH₄NO₃$ sublimes and decomposes slowly (to N_2O and H_2O) so that the melt slowly concentrates.

> An example for CN 9 is found in the heteroleptic molecular complex $Yb(NO_3)_3 (H_2O)_3$, the trihydrate of ytterbium(III) nitrate [38], Fig. 5.

Another example of a potentially tridentate ligand is the carbonate ion, CO_3^2 . As for nitrate, there is no crystal Fig. 2. The anion $[Dy_2Cl_8(CH_3CN)_2]^2$ as observed in structure of a binary carbonate yet available because (Ph.P)DyCl.(CH.CN) $[Dy_2Cl_8(CH_3CN)_2]^2$ as observed in 28 3 2 3 3 2 3 3 2 3 3 3 3 3 2 3 3 3 2 3 3 2 3 3 2 3 2 3 3 2 3 3 carbonates such as $CsPr(CO_3)_2$ [39] and a number of

Fig. 3. Crown ether complexes: Monomeric and dimeric *in-cavity*- and *out-of-cavity* complexes as observed in [SmI₃(dibenzo-18-crown-6] (a), $[LaBr₃(12-crown-4)(acetone)]$ (b), $[La₂I₂(OH)₂(diberzo-18-crown-6)₂]*I*₃(c), and $[Y₂(OH)₂(Beuro-15-crown-5)₂(CH₃CN)₂]*I*₄(d), respectively.$$

known. Additionally, single crystals of basic carbonates enhanced to 7 and further to 8 (Ho(CH₃COO)₃) [44]. In such as $Dy_2(CO_3)O_2$ and $Dy(CO_3)(OH)$ could be grown $Pr(CH_3COO)_3$ we find a network-type structure with CN hydrothermally and the crystal structures were determined

[42]. Coordination numbers for Dy³⁺ in these compounds

are usually 8 or 7, for Pr³⁺ in CsPr(CO₃)₂ 8 and 9, La(CH₃COO)₃ [46].

respectively, Fig. 6. C

anhydrous binary acetates is now known. In $M(CH_3COO)Cl_2(H_2O)_7$, respectively, chloride is, as the $Sc(CH_3COO)_3$ [43], Sc³⁺ has CN 6, three bidentate- weaker ligand, in the outer coordination sphere [47–51]. In

potassium and rubidium analogues, $KM(CO_3)_2$ ($M=La$ bridging acetate ligands lead to a chain. Moving on to Nd) [40] and Rb($Sm(CO_3)_2$ [41] are now structurally well larger M^{3+} cations like Lu^{3+} , the coordination numb

Coordination numbers of 9 are also found in a number Whereas single crystals of binary carbonates and nitrates of heteroleptic complexes. In the 2:1:3 and 1:2:7 type have not yet been obtained, almost the complete series of acetate-chloride-hydrates $M(CH_3COO)_2Cl(H_2O)_3$ and anhydrous binary acetates is now known. In $M(CH_3COO)Cl_2(H_2O)_7$, respectively, chloride is, as the

Fig. 4. Molecular structure of $[NdCl(NO₃)₂(tetraglyme)]$ and the coordination sphere around $Nd³⁺$ (right).

Fig. 5. Nitrates: Coordination numbers of 12 in the anions of $(NH_4)_2[M(NO_3)_5(H_2O)_2(H_2O)_2$ (a) and $(NH_4)_6[Nd(NO_3)_6](NO_3)_3$ (b), CN 10 in $(NH_4)_2[M(NO_3)_5]$ (c) and CN 9 in the molecule $Yb(NO_3)_3(H_2O)_3$ (d).

Fig. 6. Carbonates: Crystal structures of the ternary carbonates KNd(CO₃)₂ (a) and KDy(CO₃)₂ (b) and of the basic carbonates Dy₂(CO₃)O₂ (c) and $Dy(CO_3)(OH)$ (d).

the first one, $[M(CH_3COO)_2(H_2O)_3]$ Cl with M=Ce-Lu, Y, been carried into proprionates, of which we observe infinite chains of nine-coordinate M^{3+} where $Pr(CH_3CH_2COO)_3(H_2O)_3$ [53] exhibits in principle the we observe infinite chains of nine-coordinate M^{3+} where $Pr(CH_3CH_2COO)_3(H_2O)_3$ [53] exhibits in principle the same schemes as do acetates. It has a chain structure with monodentate ligands twice each. Three water molecules $Pr³⁺ CN 9$ and 10, respectively. molecules fill up the coordination sphere. In the latter one, Additionally, after the above-mentioned heteroleptic $[M(CH_3COO)(H_2O)_6]Cl_2(H_2O)$ with M=La-Sm, dimers
are formed through two bidentate-bridging acetate ligands
and the coordination sphere is completed by six water
molecules. The only example that we could find for an
In pursui molecules. The only example that we could find for an inner-sphere chloride ligand is rare earths, especially europium for its optical proper- $[La_2(CH_3COO)_2(H_2O)_7Cl_3]Cl$ [52]. Both symmetrically ties, two new salts were obtained: independent La³⁺ have CN 9, however with 2 Cl+7 O and (CH₃NH₂)[Eu(C₆H₅COCH₂COCH₂COC_F)₄] and the naphthyl

1 Cl+8 O ligator atoms, respectively, Fig. 7. analogue $(CH_3NH_2)[Eu(C_{10}H_{17}COCH_2COCF_3)_4]$ [27]. In 3 With regard to acetates, initial investigations have also both, Eu³⁺ has CN 8 (Fig. 9).

Fig. 7. Acetates and acetate-chlorides: (a) One-dimensional chains in the anhydrous acetates Sc(CH₃COO)₃ (CN 6), Lu(CH₃COO)₃ (CN 7), and Ho(CH₃COO)₃ (CN 8); (b) chains and dimers in the crystal structures of [

Fig. 8. Dichloroacetates: Chain of the composition $[Pr_2(Cl_2HCCOO)_6(H_2O)_3]$ in $Pr_2(Cl_2HCCOO)_6Cl_2HCCOOH_3H_2O$ (a) and the layer built up from dimers in $Sm_2(Cl_2HCCOO)_6'4H_2O$ (b).

Fig. 9. β -Diketonato complexes: The anions $[Eu(C_6H_5COCH_2COCF_3)_4]$ ⁻ (a) and $[Eu(C_{10}H_{17}COCH_2COCF_3)_4]$ ⁻ (b) in the crystal structures of $(CH_3NH_2)[Eu(C_6H_5COCH_2COCF_3)_4]$ and $(CH_3NH_2)[Eu(C_{10}H_{17}COCH_2COCF_3)_4]$, respectively.

- [1] R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B25 (1969) 925. (1998) 690.
-
- [3] G. Meyer, M.S. Wickleder, in: K.A. Gschneidner, L. Eyring (Eds.), [8] G. Meyer, J. Soose, A. Moritz, V. Vitt, Th. Holljes, Z. Anorg. Allg. Handbook on the Physics and Chemistry of the Rare Earths.

P. Egger, P. Rogin, T. Riedener, H.U. Güdel, M.S. Wickleder, J. [9] G. Meyer, Z. Anorg. Allg. Chem. 469 (1980) 149.
- [4] P. Egger, P. Rogin, T. Riedener, H.U. Güdel, M.S. Wickleder, J. Hulliger, Adv. Mater. 8 (1996) 668. [10] G. Meyer, Z. Anorg. Allg. Chem. 491 (1982) 217.
- **References** [5] M.S. Wickleder, P. Egger, T. Riedener, N. Furer, H.U. Güdel, J. Hulliger, Chem. Mater. 8 (1996) 2828.
	- [6] S. Masselmann, G. Meyer, Z. Kristallogr, New Crystal Struct. 213
- [2] R.D. Shannon, Acta Crystallogr. A32 (1976) 751. [7] G. Meyer, E. Huttl, Z. Anorg Allg. Chem. 497 (1983) 191. ¨
	-
	-
	-
- [11] S. Masselmann, G. Meyer, Z. Anorg. Allg. Chem. 624 (1998) 357. [33] C. Auer von Welsbach, Monatsh. Chem. 6 (1884) 477.
-
- [13] Th. Schleid, G. Meyer, Z. Anorg. Allg. Chem. 590 (1990) 103. 77.
- [14] M.S. Wickleder, G. Meyer, Z. Anorg. Allg. Chem. 621 (1995) 546. [35] E. Manek, G. Meyer, Z. Anorg. Allg. Chem. 616 (1992) 141.
- [15] M.S. Wickleder, H.-U. Gudel, T. Armbruster, G. Meyer, Z. Anorg. [36] E. Manek, G. Meyer, Z. Anorg. Allg. Chem. 619 (1993) 761. ¨ Allg. Chem. 622 (1996) 785. [37] E. Manek, G. Meyer, Z. Anorg. Allg. Chem. 619 (1993) 1237.
- [16] A. Bohnsack, M.S. Wickleder, G. Meyer, Z. Kristallogr. 211 (1996) [38] H. Jacobsen, G. Meyer, Z. Anorg. Allg. Chem. 615 (1992) 16. 394. [39] A. Lossin, G. Meyer, Z. Anorg. Allg. Chem. 619 (1993) 2031.
-
- [18] G. Meyer, P. Linzmeier, Rev. Chim. Miner. 14 (1977) 52. Z. Anorg. Allg. Chem. 623 (1997) 1753.
- (1987) 25. 236.
-
-
- [22] J. Trotter, F.W.B. Einstein, D.G. Tuck, Acta Crystallogr. B25 (1969) [44] A. Lossin, G. Meyer, Z. Anorg. Allg. Chem. 619 (1993) 1609. 603. [45] A. Lossin, G. Meyer, Z. Anorg. Allg. Chem. 620 (1994) 438.
-
- [24] G. Crisci, G. Meyer, Z. Anorg. Allg. Chem. 620 (1994) 1023. 1603.
- [25] C. Runschke, G. Meyer, Z. Anorg. Allg. Chem. 623 (1997) 981. [47] Th. Schleid, G. Meyer, Z. Kristallogr. 189 (1989) 258.
- [26] C. Runschke, G. Meyer, Z. Anorg. Allg. Chem. 623 (1997) 1493. [48] Th. Schleid, G. Meyer, Z. Naturforsch. 44b (1989) 1007.
-
-
- [29] R.D. Rogers, A.N. Rollins, R.F. Henry, J.S. Murdoch, R.D. Et- 28 (1991) 529. zenhouser, S.E. Huggins, L. Nunez, Inorg. Chem. 30 (1991) 4946. [51] A. Lossin, G. Meyer, J. Less-Common Met. 175 (1991) 301.
-
- [31] A. Möller, N. Scott, G. Meyer, G.B. Deacon, Z. Anorg. Allg. Chem. (1991) 299. 625 (1999) 181. [53] D. Deiters, G. Meyer, Z. Anorg. Allg. Chem. 622 (1996) 325.
- [32] C. Auer von Welsbach, Monatsh. Chem. 5 (1884) 508. [54] G. Meyer, C. Bromant, 1998. Unpublished research.
-
- [12] G. Meyer, Z. Anorg. Allg. Chem. 517 (1984) 191. [34] G. Meyer, E. Manek, A. Reller, Z. Anorg. Allg. Chem. 591 (1990)
	-
	-
	-
	-
	-
- [17] S. Masselmann, G. Meyer, Z. Anorg. Allg. Chem. 624 (1998) 551. [40] I. Kutlu, H.-J. Kalz, R. Wartchow, H. Ehrhardt, H. Seidel, G. Meyer,
- [19] G. Meyer, P. Ax, Th. Schleid, M. Irmler, Z. Anorg. Allg. Chem. 554 [41] I. Kutlu, G. Meyer, Z. Kristallogr., New Crystal Struct. 213 (1998)
- [20] G. Meyer, Z. Anorg. Allg. Chem. 511 (1984) 193. [42] I. Kutlu, G. Meyer, Z. Anorg. Allg. Chem. 625 (1999) 402.
- [21] G. Meyer, Prog. Solid State Chem. 14 (1982) 141. [43] R. Fuchs, J. Strahle, Z. Naturforsch. 39b (1984) 1662. ¨
	-
	-
- [23] G. Crisci, G. Meyer, Z. Anorg. Allg. Chem. 624 (1998) 927. [46] G. Meyer, D. Gieseke-Vollmer, Z. Anorg. Allg. Chem. 619 (1993)
	-
	-
- [27] J.J. Aiscar, 1998. Dissertation, University of Hannover. [49] Th. Schleid, G. Meyer, Z. Anorg. Allg. Chem. 583 (1990) 46.
- [28] C. Runschke, G. Meyer, Z. Anorg. Allg. Chem. 623 (1997) 1017. [50] G. Meyer, A. Lossin, Th. Schleid, Eur. J. Solid State Inorg. Chem.
	-
- [30] C. Runschke, G. Meyer, Z. Anorg. Allg. Chem. 624 (1998) 1243. [52] Th. Schleid, A. Lossin, G. Meyer, Z. Anorg. Allg. Chem. 598/599
	-
	-